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Abstract

In this study, the transient response of a semi-infinite crack subjected to dynamic anti-plane concentrated loading in

a hexagonal piezoelectric medium (6 mm) is investigated. The crack surfaces are assumed to behave as though covered

with a conducting electrode. In order to give an insight into the effect of the electrode boundary condition, a simple half-

plane problem is also discussed in the paper. A new fundamental solution for piezoelectric materials is proposed and the

transient solution for the cracked body is determined by superposition of the fundamental solution in the Laplace

transform domain. The fundamental solution to be used is the problem of applying exponentially distributed traction

on the crack faces in the Laplace transform domain. Exact analytical transient solutions for the dynamic stress intensity

factor, the dynamic electric displacement intensity factor, and the dynamic energy release rate are obtained by using the

Cagniard method of Laplace inversion and are expressed in explicit forms. Finally, numerical results for the transient

solutions are evaluated and discussed in detail.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, due to the intrinsic electro-mechanical coupling behaviors, piezoelectric materials have been

widely used as actuating and sensing devices in smart structures. Because of the brittle properties of most

piezoelectric materials, the failure analysis of piezoelectric structures has attracted more attention from
many researchers. Most of studies, however, are related to static or quasi-static conditions, e.g. Pak (1990),

Sosa (1992), Suo et al. (1992), Park and Sun (1995a,b), Zhang and Tong (1996), Narita and Shindo (1998a),

Qin and Mai (1998), Gao and Fan (1999a,b), Shen et al. (1999), Yang and Kao (1999), Kwon and Lee

(2000), Ru (2000), Gao and Wang (2001), Yang (2001) and Li (2003).
* Corresponding author. Tel.: +886-226-215-656; fax: +886-226-209-746.

E-mail address: ysing@mail.tku.edu.tw (Y.-S. Ing).

0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2004.02.038

mail to: ysing@mail.tku.edu.tw


3850 Y.-S. Ing, M.-J. Wang / International Journal of Solids and Structures 41 (2004) 3849–3864
Because of the mathematical complications, less attention has been paid to the study of dynamic fracture

mechanics of piezoelectric materials. Shindo and Ozawa (1990) first investigated the steady response of a

cracked piezoelectric material subjected to plane harmonic waves. Afterward the dynamic fracture analysis

of piezoelectric materials is developed rapidly. For example, the single crack problem had been investigated
by Chen et al. (1998), Chen (1998), Narita and Shindo (1998b, 1999), Kwon and Lee (2001), Shin et al.

(2001), Meguid and Zhao (2002), and Ueda (2003), while the multiple cracks problem had been studied by

Wang and Meguid (2000), Wang et al. (2000), Meguid and Chen (2001), Wang (2001), Zhao and Meguid

(2002) and Zhou et al. (2003). However, due to the mathematical difficulties, all of the above researchers

obtained their solutions by means of some numerical methods. The exactly analytical solution for cracked

piezoelectric materials is hard to be derived. Li and Mataga (1996a,b) first obtained transient closed-form

solutions for dynamic stress and electric displacement intensities and dynamic energy release rate of a

propagating crack in hexagonal piezoelectric materials. They assumed that the crack surfaces are electrode-
or vacuum-type boundary conditions and the dynamic anti-plane point loading is initially applied at

the stationary crack tip. Hence there is no characteristic length presented in their problems. In this study,

the transient response of a semi-infinite crack subjected to dynamic anti-plane concentrated loading on the

crack faces in a hexagonal piezoelectric medium is investigated. The inherent characteristic length makes

the problem more difficult. A new fundamental solution is derived and the transient solution is determined

by superposition of the fundamental solution in the Laplace transform domain. Similar superposition

techniques had been successfully used to solve many transient problems of purely elastic solids (Ma and

Ing, 1995, 1997a,b; Ing and Ma, 1996, 1997a,b, 1999, 2001, 2003a,b; Ing and Lin, 2002). It demonstrates a
powerful method to deal with cracked problems with characteristic lengths.

The choice of conducting or non-conducting boundary conditions of cracked piezoelectric solids is a

controversial issue. The types of electric boundary conditions along the crack surfaces have received many

discussions in the past researches. How to give suitable consideration to both physical reality and math-

ematical complications is difficult. In this study, the crack surfaces are assumed to be the electrode-type

boundary condition, which shorts out the horizontal component of the electric field at the crack faces but

does not affect the mechanical boundary conditions. The same assumption had been proposed by Bleustein

(1968) and Li and Mataga (1996a). Although this metallic coating condition is chiefly a mathematically
convenient proposition, this boundary condition is also appropriate if the crack surfaces are in a state of

electric contact, or if the crack is filled with conducting gas or liquid (Li and Mataga, 1996a). Under this

assumption, exact analytical transient solutions for the dynamic stress intensity factor, the dynamic electric

displacement intensity factor, and the dynamic energy release rate are obtained in this study. Finally,

numerical calculations have been carried out to show the influence of the pertinent parameters.
2. Transient solutions for a piezoelectric half-plane with electrode boundary

Before we deal with the complicated problem of a cracked piezoelectric medium, a simple half-plane

problem is studied in order to understand the phenomenon of wave propagation under the electrode

boundary condition. If we consider only the out-of-plane displacement and the in-plane electric fields, the

dynamic anti-plane governing equations for a hexagonal piezoelectric material (6 mm) can be described by
c44r2wþ e15r2/ ¼ q€w; ð1Þ

e15r2w� e11r2/ ¼ 0; ð2Þ

where w ¼ wðx; yÞ is the anti-plane displacement in the z-direction (which is assumed to aligned with the
hexagonal symmetry axis), / ¼ /ðx; yÞ is the electric potential, c44 is the elastic modulus measured in a

constant electric field, e11 is the dielectric permittivity measured at a constant strain, e15 is the piezoelectric
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constant, and q is the material density. r2 ¼ o2=ox2 þ o2=oy2 is the in-plane Laplacian and a dot denotes

material time derivative.

The constitutive equations for the piezoelectric material can be expressed as (Chen and Karihaloo, 1999)
skz ¼ c44w;k þ e15/;k; ð3Þ

Dk ¼ e15w;k � e11/;k; ð4Þ
where skz and Dk (k ¼ x; y) are the anti-plane shear stress and in-plane electric displacements, respectively.

Introduce a transformation proposed by Bleustein (1968)
w ¼ / � e15
e11

w; ð5Þ
the governing equations expressed in Eqs. (1) and (2) can be decoupled as
r2w ¼ q
�c44

€w; ð6Þ

r2w ¼ 0; ð7Þ

where
�c44 ¼ c44 þ
e215
e11

ð8Þ
is the piezoelectrically stiffened elastic constant. The constitutive equations can then be rewritten as follows:
skz ¼ �c44w;k þ e15w;k; ð9Þ

Dk ¼ �e11w;k: ð10Þ
Consider a piezoelectric half-plane occupying the region of y6 0. The free surface y ¼ 0 is coated with an

infinitesimally thin conducting electrode that is grounded. The piezoelectric half-plane is initially stress-free

and at rest. At time t ¼ 0, an anti-plane dynamic point loading with magnitude p is applied at the origin
ðx; yÞ ¼ ð0; 0Þ on the surface. The boundary conditions of the half-plane problem can be described as

follows:
syzðx; 0; tÞ ¼ pdðxÞHðtÞ; ð11Þ

/ðx; 0; tÞ ¼ 0; ð12Þ

where dð Þ is the Dirac delta function and Hð Þ is the Heaviside function.

This transient problem can be solved by using the integral transform method. The one-sided Laplace

transform with respect to time and the two-sided Laplace transform with respect to x are defined by

(Achenbach, 1973)
�f ðx; y; sÞ ¼
Z 1

0

f ðx; y; tÞe�st dt; ð13Þ

�f �ðk; y; sÞ ¼
Z 1

�1
�f ðx; y; sÞe�skx dx: ð14Þ
Applying the one-sided Laplace transform over time and the two-sided Laplace transform over x in Eqs. (6)

and (7), the general solutions for �w� and �w� (in the region of y6 0) in the double transformed domain are
�w�ðk; y; sÞ ¼ A1ðs; kÞesaðkÞy ; ð15Þ
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�w�ðk; y; sÞ ¼ B1ðs; kÞesbðkÞy ; ð16Þ
where
aðkÞ ¼ ðb2 � k2Þ1=2; ð17Þ
bðkÞ ¼ ðe2 � k2Þ1=2 ð18Þ
and
b ¼
ffiffiffiffiffiffi
q
�c44

r
ð19Þ
is the slowness of the bulk shear wave in the piezoelectric material. e ! 0þ is an auxiliary positive real
perturbation parameter (Li and Mataga, 1996a,b).

From the boundary conditions in Eqs. (11) and (12), we can solved the unknown functions A1 and B1.

Then the Cagniard method of Laplace inversion (Cagniard, 1939) is employed, the transient full-field

solutions for shear stresses and electric displacements can be obtained and expressed in time domain as

follows:
sxzðx; y; tÞ ¼
p
p

Im
kþ
1

aðkþ
1 Þ � k2

ebðk
þ
1 Þ

okþ
1

ot

� �
Hðt

�
� brÞ � k2

e Im
kþ
2

aðkþ
2 Þ � k2

ebðk
þ
2 Þ

okþ
2

ot

� �
Hðt � erÞ

�
;

ð20Þ
syzðx; y; tÞ ¼
p
p

Im
aðkþ

1 Þ
aðkþ

1 Þ � k2
ebðk

þ
1 Þ

okþ
1

ot

� �
Hðt

�
� brÞ � k2

e Im
bðkþ

2 Þ
aðkþ

2 Þ � k2
ebðk

þ
2 Þ

okþ
2

ot

� �
Hðt � erÞ

�
; ð21Þ
Dxðx; y; tÞ ¼
e11k2

ep
e15p

Im
kþ
2

aðkþ
2 Þ � k2

ebðk
þ
2 Þ

okþ
2

ot

� �
Hðt

�
� erÞ

�
; ð22Þ
Dxðx; y; tÞ ¼
e11k2

ep
e15p

Im
bðkþ

2 Þ
aðkþ

2 Þ � k2
ebðk

þ
2 Þ

okþ
2

ot

� �
Hðt

�
� erÞ

�
; ð23Þ
where
kþ
1 ¼ � t

r
cos h þ i

j sin hj
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � b2r2

p
; kþ

1 ¼ � t
r
cos h þ i

j sin hj
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � e2r2

p
;

r2 ¼ x2 þ y2; h ¼ cos�1 x
r

� 	

and
ke ¼

ffiffiffiffiffiffiffiffiffiffiffi
e215

�c44e11

s
ð24Þ
is the electromechanical coupling coefficient for the electrode boundary condition. It is noted that the

function a � k2
eb in the denominators of Eqs. (20)–(23) corresponds to the Bleustein–Gulyaev piezoelectric

surface wave for the electrode-boundary case (Bleustein, 1968; Li and Mataga, 1996a). This surface wave

propagates at speed cbg defined by
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cbg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c44ð1� k4

e Þ
q

s
: ð25Þ
In addition, the appropriate static solutions can be derived by the limiting case t ! 1, and the final

results are
ssyzðx; yÞ ¼
pj sin hj

pr
; ð26Þ
ssxzðx; yÞ ¼
�p cos h

pr
; ð27Þ
Ds
xðx; yÞ ¼

�e11k2
ep cos h

e15prð1� k2
e Þ
; ð28Þ
Ds
yðx; yÞ ¼

e11k2
epj sin hj

e15prð1� k2
e Þ
: ð29Þ
The numerical example to be considered here is a PZT-4 half-plane. Fig. 1 shows the non-dimensional

transient stresses syz=ssyz for different values of h. It can be seen that the transient response is non-zero for

time t < br (due to the piezoelectric effect) and reveals a square root singularity as the shear wave arrives at

the field point, and then approaches to the corresponding static value rapidly. It is noted that, in the case of
h ¼ �30�, there is an obvious variation at the instance t ¼ 1:15br that is the arrival time of the Bleustein–

Gulyaev piezoelectric surface wave. In order to observe the characteristic of the surface wave, a field line

h ¼ �0:1� near the surface is examined and the result is shown in Fig. 2. It is clearly seen that the magnitude

of the transient stress tends towards infinity at the arrival time of the surface wave. Hence, the mode III

problem of a piezoelectric solid exhibits a similar surface wave phenomenon as the in-plane problem of a

purely elastic solid. Fig. 3 shows the non-dimensional electric displacements Dy=Ds
y for different values of h.
Fig. 1. Transient stresses syz of the PZT-4 half-plane for h ¼ �30�, )60�, and )90�.



Fig. 2. Transient stresses syz of the PZT-4 half-plane for h ¼ �0:1�.

Fig. 3. Transient electric displacements Dy of the PZT-4 half-plane for h ¼ �30�, )60� and )90�.
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It can be viewed that there is no singularity at time t ¼ br and the transient response of the electric dis-
placement Dy is always smaller than the corresponding static value.
3. Fundamental solutions for cracked piezoelectric materials

In this section, a fundamental problem is proposed and the associated fundamental solutions will be

used to solve the complicatedly cracked problem with a characteristic length in the next section. Consider
an unbounded hexagonal piezoelectric medium containing a semi-infinite crack that lies on the negative
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x-axis. It is assumed that the crack surfaces are perfectly covered with an infinitesimally thin conducting

electrode that is grounded, such that the electrostatic potential vanishes over the crack surfaces. The

solutions for an anti-plane exponentially distributed traction applied to the crack faces in the Laplace

transform domain will be referred to as the fundamental solutions. Because of the symmetries of the
geometry and boundary conditions, this problem can be viewed as a half-plane problem with material

occupying the region of y P 0, and subjected to the following mixed boundary conditions in the Laplace

transform domain
�syzðx; 0; sÞ ¼ esgx for �1 < x < 0; ð30Þ

�/ðx; 0; sÞ ¼ 0 for �1 < x < 0; ð31Þ

�wðx; 0; sÞ ¼ 0 for 0 < x < 1; ð32Þ
where g is a constant.

In order to solve the fundamental problem with the governing equations (6) and (7) and the

mixed-type boundary conditions in Eqs. (30)–(32), the integral transform method and the Wiener–Hopf

technique will be implemented in the following derivation. From Eqs. (6) and (7), the general solutions

for �w� and �w� (in the upper half-plane y P 0) in the double transformed domain can be obtained as

follows
�w�ðk; y; sÞ ¼ Aðs; kÞe�saðkÞy ; ð33Þ

�w�ðk; y; sÞ ¼ Bðs; kÞe�sbðkÞy : ð34Þ

Using the relation in Eq. (5) and substituting into the boundary condition in Eq. (31) will have
Bðs; kÞ ¼ � e15
e11

Aðs; kÞ: ð35Þ
Application of the multiple Laplace transforms to Eqs. (30) and (32) yields
�s�yzðk; 0; sÞ ¼
1

sðg � kÞ þ �s�þðk; sÞ for �1 < x < 1; ð36Þ

�w�ðk; 0; sÞ ¼ �w�
�ðk; sÞ for �1 < x < 1; ð37Þ
where ReðgÞ > ReðkÞ. The unknown function sþ is defined to be the shear stress syz on the plane y ¼ 0 for

0 < x < 1. Likewise, w� is defined to be the displacement in the z-direction of the crack face y ¼ 0þ for
�1 < x < 0. Making use of Eqs. (33) and (37) will lead to A ¼ �w�

�. From Eqs. (34), (35) and (9), the

expression for shear stress �s�yz is obtained and then substituting it into the transformed stress boundary

condition of Eq. (36), we can obtain the following Wiener–Hopf equation:
DðkÞ�w�
� ¼ 1

s2ðg � kÞ þ
�s�þ
s
; ð38Þ
where
DðkÞ ¼ ��c44½aðkÞ � k2
ebðkÞ
: ð39Þ
At this point it is convenient to introduce a new function SðkÞ by defining
SðkÞ ¼ 1

1� k2
e

aðkÞ � k2
ebðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bbg þ k
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bbg � k
p ; ð40Þ
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where bbg ¼ 1=cbg is the slowness of the Bleustein–Gulyaev piezoelectric surface wave for electrode

boundary. The function SðkÞ has the properties that SðkÞ ! 1 as jkj ! 1, and SðkÞ has neither zeros nor

poles in the k-plane by cuts along �bbg < k < �e and e < k < 1=bbg. From the general product factorization

method, SðkÞ can be written as the product of two regular functions SþðkÞ and S�ðkÞ, where
SþðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bbg þ k
bþ k

r
QþðkÞ ð41Þ
and
S�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bbg � k
b� k

r
Q�ðkÞ; ð42Þ
in which
QþðkÞ ¼ exp
1

p

Z b

e
tan�1 k2

e z
að�zÞ

� �
dz

zþ k

� �
: ð43Þ

Q�ðkÞ ¼ exp
1

p

Z b

e
tan�1 k2

e z
aðzÞ

� �
dz

z� k

� �
: ð44Þ
In view of the previous discussion, Eq. (38) may be rewritten as
��c44ð1� k2
e Þ

ðbbg � kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� kÞ

p Q�ðkÞ�w�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ kÞ

p
s2ðg � kÞðbbg þ kÞQþðkÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ kÞ

p
�s�þ

sðbbg þ kÞQþðkÞ
: ð45Þ
The first term on the right-hand side is regular for ReðkÞ > �e, except for the pole at k ¼ g. This pole can,

however, be removed by writing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ kÞ

p
s2ðg � kÞðbbg þ kÞQþðkÞ

¼

ffiffiffiffiffiffiffiffi
ðbþkÞ

p
ðbbgþkÞQþðkÞ �

ffiffiffiffiffiffiffiffi
ðbþgÞ

p
ðbbgþgÞQþðgÞ

s2ðg � kÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞ

p
s2ðg � kÞðbbg þ gÞQþðgÞ

: ð46Þ
Eq. (45) can now be rearranged into the desired form
��c44ð1� k2
e Þ

ðbbg � kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� kÞ

p Q�ðkÞ�w�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞ

p
s2ðg � kÞðbbg þ gÞQþðgÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ kÞ

p
s2ðg � kÞðbbg þ kÞQþðkÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞ

p
s2ðg � kÞðbbg þ gÞQþðgÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ kÞ

p
�s�þ

sðbbg þ kÞQþðkÞ
: ð47Þ
The left-hand side of this equation is regular for ReðkÞ < 0, while the right-hand side is regular for

ReðkÞ > �e. Applying the analytic continuation argument, therefore, each side of Eq. (47) represents a

single entire function, say EðkÞ. By Liouville’s theorem, the bounded entire function EðkÞ is a constant. The
magnitude of the constant can be obtained from order conditions on EðkÞ as jkj ! 1, which in turn are

obtained from order conditions on the dependent field variables in the vicinity of x ¼ 0. Furthermore,
�sþðx; 0; sÞ is expected to be square root singular near x ¼ 0, i.e. �sþðx; 0; sÞ ¼ Oðjxj�1=2Þ as x ! 0þ. By using

of the Abelian theorem, EðkÞ vanishes identically, and then we can solve for �w�
� from the left-hand side of

Eq. (47). Since the amplitude of displacement Aðs; kÞ ¼ �w�
� in the Laplace transform domain, we find
Aðs; kÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
�c44ð1� k2

e Þs2ðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ
: ð48Þ
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Substituting Eq. (48) into Eqs. (33)–(35) and making use of Eqs. (9) and (10), and then inverting the two-

sided Laplace transform, we can obtain solutions for the fundamental problem in the Laplace transform

domain as follows
�wðx; y; sÞ ¼ �1

2pi

Z
Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
e�saðkÞyþskx

�c44ð1� k2
e Þsðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk; ð49Þ

�/ðx; y; sÞ ¼ �1

2pi

Z
Ck

k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
e�saðkÞyþskx

e15ð1� k2
e Þsðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk

þ 1

2pi

Z
Ck

k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
e�sbðkÞyþskx

e15ð1� k2
e Þsðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk; ð50Þ

�sxzðx; y; sÞ ¼
�1

2pi

Z
Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
ke�saðkÞyþskx

ð1� k2
e Þðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk

þ 1

2pi

Z
Ck

k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
ke�sbðkÞyþskx

ð1� k2
e Þðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk; ð51Þ

�syzðx; y; sÞ ¼
1

2pi

Z
Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
aðkÞe�saðkÞyþskx

ð1� k2
e Þðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk

� 1

2pi

Z
Ck

k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
bðkÞe�sbðkÞyþskx

ð1� k2
e Þðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk; ð52Þ

Dxðx; y; sÞ ¼ � 1

2pi

Z
Ck

e11k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
ke�sbðkÞyþskx

e15ð1� k2
e Þðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk; ð53Þ

Dyðx; y; sÞ ¼
1

2pi

Z
Ck

e11k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞðb� kÞ

p
bðkÞe�sbðkÞyþskx

e15ð1� k2
e Þðbbg þ gÞQþðgÞðg � kÞðbbg � kÞQ�ðkÞ

dk: ð54Þ
The corresponding results of the dynamic stress intensity factor and the electric displacement intensity

factor in the Laplace transform domain are
K
ðsÞ
IIIðsÞ ¼ lim

x!0

ffiffiffiffiffiffiffiffi
2px

p
�syzðx; 0; sÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðbþ gÞ

p
ffiffi
s

p ðbbg þ gÞQþðgÞ
ð55Þ
and
K
ðDÞ
III ðsÞ ¼ lim

x!0

ffiffiffiffiffiffiffiffi
2px

p
Dyðx; 0; sÞ ¼ � e11k2

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðbþ gÞ

p
e15ð1� k2

e Þ
ffiffi
s

p
ðbbg þ gÞQþðgÞ

; ð56Þ
respectively.
4. Transient analysis of a piezoelectric crack subjected to dynamic concentrated loading

Consider a semi-infinite crack located at y ¼ 0; x < 0 in an unbounded hexagonal piezoelectric medium

as shown in Fig. 4. It is assumed that the crack surfaces are completely coated with an infinitesimally thin
perfectly conducting electrode that is grounded, such that the electrostatic potential vanishes over the crack



Fig. 4. Configuration and coordinate system of a piezoelectric crack subjected to anti-plane shear forces.
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surfaces. At time t ¼ 0, a pair of equal and opposite dynamic anti-plane concentrated loadings with

magnitude p are applied at the crack faces with a distance h from the crack tip. The time dependence of the

concentrated loading is represented by the Heaviside function HðtÞ. The boundary condition for the applied

loading can be represented by
syzðx; 0; tÞ ¼ �pdðxþ hÞHðtÞ: ð57Þ

The incident field generated by the concentrated loading can be expressed in the Laplace transform domain
as follows:
�syzðx; 0; sÞ ¼
1

2pi

Z
Ck

�peskðhþxÞ dk: ð58Þ
The applied traction on the crack faces as indicated in Eq. (58), has the functional form eskx. Since the

solutions of applying traction esgx on crack faces have been solved in the previous section, the diffracted field

generated from the crack tip can be constructed by superimposing the incident wave traction that is equal to
Eq. (58). Since the dynamic stress and electric displacement intensities and the dynamic energy release rate

are the key parameters in characterizing dynamic crack growth, we will focus our attention mainly on the

determination of these quantities. When we combine Eqs. (55) and (58), the dynamic stress intensity factor

expressed in the Laplace transform domain can be obtained as follows:
K
ðsÞ
IIIðsÞ ¼

1

2pi

Z
Ck

�peskh
(

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðbþ kÞ

p
ffiffi
s

p ðbbg þ kÞQþðkÞ

)
dk ð59Þ
and from Eqs. (56) and (58), the dynamic electric displacement intensity factor is
K
ðDÞ
III ðsÞ ¼

1

2pi

Z
Ck

�peskh
(

� e11k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðbþ kÞ

p
e15ð1� k2

e Þ
ffiffi
s

p ðbbg þ kÞQþðkÞ

)
dk: ð60Þ
By using the Cagniard method of Laplace inversion, the relevant dynamic intensity factors in time

domain can be obtained as follows
KðsÞ
III ðtÞ ¼

ffiffiffiffiffiffiffi
2

p3h

r
p
Z t

0

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s � bh

p

ðs � bbghÞQ�ðs=hÞ
ffiffiffiffiffiffiffiffiffiffi
t � s

p
" #

ds HðtÞ ð61Þ
and
KðDÞ
III ðtÞ ¼

e11k2
e

e15ð1� k2
e Þ

ffiffiffiffiffiffiffi
2

p3h

r
p
Z t

0

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s � bh

p

ðs � bbghÞQ�ðs=hÞ
ffiffiffiffiffiffiffiffiffiffi
t � s

p
" #

ds HðtÞ: ð62Þ
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It is pointed out that the integrands in the brackets of Eqs. (61) and (62) are purely imaginary numbers

when t < bh, so the dynamic intensity factors equal zero during this stage. The reason is that for the

particular case of the electrode boundary condition considered here, the electrostatic potential is zero not

only on the crack face but also along the line ahead of the crack. Consequently, there is no effect from
electric field to the dynamic intensity factors before the incident shear wave is diffracted by the crack tip.

Furthermore, both integrands of Eqs. (61) and (62) have a pole singularity at s ¼ bbgh, which corresponds

to the instant of arrival of the Bleustein-Gulyaev piezoelectric surface wave traveling along the crack faces

from the load points to the crack tip. The direct calculations cannot be applied to these integrals for

t > bbgh. By using contour integration, however, the integrals in Eqs. (61) and (62) for time t > bbgh can be

evaluated and yield
KðsÞ
III ðtÞ ¼ KðsÞ;s

III Hðt � bbghÞ; ð63Þ

KðDÞ
III ðtÞ ¼ KðDÞ;s

III Hðt � bbghÞ; ð64Þ
where
KðsÞ;s
III ¼ p

ffiffiffiffiffiffi
2

ph

r
ð65Þ
and
KðDÞ;s
III ¼ e11k2

ep
e15ð1� k2

e Þ

ffiffiffiffiffiffi
2

ph

r
: ð66Þ
The results expressed in Eqs. (65) and (66) are the corresponding static solutions of the stress intensity

factor and the electric displacement intensity factor, respectively. It is interesting to note that the magnitude

of both dynamic intensity factors jumps from infinity to the appropriate static value right after the Bleu-
stein–Gulyaev piezoelectric surface wave passes through the crack tip.

The energy release rate is an alternatively important quantity in fracture mechanics. According to the

above mention, there is no contribution from electric field to the dynamic energy release rate because of

the special electrode boundary condition. The energy release rate can be calculated in a way similar to the

purely elastic case. From Freund (1972), the energy release rate can be computed by
GðtÞ � 2 lim
a!0

Z a

�a
syzðx; 0; tÞ

ow
ox

ðx; 0; tÞ
�

þ Dyðx; 0; tÞ
o/
ox

ðx; 0; tÞ
�
dx

¼ 2 lim
a!0

Z a

�a
syzðx; 0; tÞ

ow
ox

ðx; 0; tÞdx:
ð67Þ
In order to calculate the dynamic energy release rate, the shear stress syz and displacement w along y ¼ 0

should be obtained first. Combining Eq. (58) and the fundamental solutions expressed in Eqs. (49) and (52),
the anti-plane displacement �w and shear stress �syz represented in the Laplace transform domain can be

derived as follows:
�wðx; y; sÞ ¼ 1

2pi

Z
Cg1

�pesg1h dg1

� �1

2pi

Z
Cg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ g1Þðb� g2Þ

p
e�saðg2Þyþsg2x

�c44ð1� k2
e Þsðbbg þ g1ÞQþðg1Þðg1 � g2Þðbbg � g2ÞQ�ðg2Þ

dg2

( )
; ð68Þ
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�syzðx; y; sÞ ¼
1

2pi

Z
Cg1

�pesg1h dg1 �
1

2pi

Z
Cg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ g1Þðb� g2Þ

p
aðg2Þe�saðg2Þyþsg2x

ð1� k2
e Þðbbg þ g1ÞQþðg1Þðg1 � g2Þðbbg � g2ÞQ�ðg2Þ

dg2

(

� 1

2pi

Z
Cg2

k2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ g1Þðb� g2Þ

p
bðg2Þe�sbðg2Þyþsg2x

ð1� k2
e Þðbbg þ g1ÞQþðg1Þðg1 � g2Þðbbg � g2ÞQ�ðg2Þ

dg2

)
: ð69Þ
By setting y ¼ 0, inverting the Laplace transform, and then taking the limit x ! 0, we can obtain
lim
x!0

ow
ox

ðx; 0; tÞ ¼ p

p2�c44ð1� k2
e Þ

ffiffiffi
h

p lim
x!0

Z t

0

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s � bh

p
Hð�xÞ

ðs � bbghÞQ�ðs=hÞ
ffiffiffiffiffiffiffiffiffiffi
t � s

p ffiffiffiffiffiffi�x
p

" #
ds; ð70Þ

lim
x!0

syzðx; 0; tÞ ¼
p

p2
ffiffiffi
h

p lim
x!0

Z t

0

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s � bh

p
HðxÞ

ðs � bbghÞQ�ðs=hÞ
ffiffiffiffiffiffiffiffiffiffi
t � s

p ffiffiffi
x

p
" #

ds: ð71Þ
Substituting Eqs. (70) and (71) into Eq. (67), and making use of the identity (Freund, 1972)
lim
a!0

Z a

�a

HðxÞffiffiffi
x

p Hð�xÞffiffiffiffiffiffi
�x

p dx ¼ p
2
; ð72Þ
the dynamic energy release rate can be obtained as follows:
GðtÞ ¼ p2

p3h�c44ð1� k2
e Þ

Z t

0

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s � bh

p

ðs � bbghÞQ�ðs=hÞ
ffiffiffiffiffiffiffiffiffiffi
t � s

p
" #

ds

( )2

¼ 1

2�c44ð1� k2
e Þ
½KðsÞ

III ðtÞ

2
: ð73Þ
This expression is the same as the solution in Eq. (156) of Li and Mataga (1996a) (by setting v ¼ 0). As

ke ! 0, Eq. (73) reduces to the well-known purely elastic results
GðtÞ ¼ 1

2c44
½KðsÞ

III ðtÞ

2
: ð74Þ
Next numerical calculations have been carried out to show the influence of the pertinent parameters.

Three piezoelectric materials, PZT-4, BaTiO3, and PZT-5, are chosen for numerical evaluations. The

material properties of these three piezoelectric media are given in Table 1. Fig. 5 shows the variation of the

dynamic stress intensity factors with the normalized time t=bh. Since the electrostatic potential is zero along

the entire line y ¼ 0, the transient solution keeps zero before the shear wave arrives at the crack tip (t < bh).
Afterward it decreases violently during the stage bh < t < bbgh, and reveals a singularity as the Bleustein–
Gulyaev piezoelectric surface wave arrives at the crack tip (t ¼ bbgh), and then jumps immediately to the

static value when the surface wave passes through the tip. As indicated in Eq. (65), the static solution is

independent of material properties.

Fig. 6 shows the transient responses of the dynamic electric displacement intensity factors. The transient

behavior is similar to that of the dynamic stress intensity factor. However, the jumped values for static

solutions are not the same for different piezoelectric materials after the surface wave passes the crack tip.
1

ial properties of PZT-4, BaTiO3, and PZT-5 piezoelectric media (Li and Mataga, 1996a)

pound PZT-4 BaTiO3 PZT-5

g/m3) 7500 5700 7750

1010 N/m3) 2.56 4.4 2.11

10�10 C/Vm) 64.634 98.722 81.103

C/m2) 12.7 11.4 12.3



Fig. 5. Normalized dynamic stress intensity factors versus normalized time for various piezoelectric materials.

Fig. 6. Normalized dynamic electric displacement intensity factors versus normalized time for various piezoelectric materials.

Y.-S. Ing, M.-J. Wang / International Journal of Solids and Structures 41 (2004) 3849–3864 3861
The transient responses of the dynamic energy release rates are plotted in Fig. 7. It can be seen that the

dynamic energy release rate also jumps to a constant value as the surface wave passes the crack tip.

Furthermore, in view of Eq. (73), the value of energy release rate increases with ke while decreases with �c44.
However, since ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e215=ð�c44e11Þ

p
, the overall effect is to increase the energy release rate with increasing ke

(or with decreasing �c44) for fixed e215=e11. Reexamining Eq. (8), �c44 ¼ c44 þ ðe215=e11Þ, so the elastic modulus
c44 dominates dynamic energy release rate over the ratio of e215=e11.

So far, the solutions for dynamic intensities and energy release rate of a piezoelectric crack subjected to a

pair of concentrated loadings on crack faces have been derived. It is noted that the solutions for more

general crack face loading can be obtained on the basis of the results shown in Eqs. (61), (62) and (73).



Fig. 7. Normalized dynamic energy release rates normalized time for various piezoelectric materials.
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Suppose that the crack faces are loaded by a pair of concentrated dynamic loadings applied at x ¼ �h with

time dependent pgðtÞ and gðtÞ ¼ 0 for t < 0. The dynamic stress intensity factor for this modified problem is
KðsÞ;g
III ðtÞ ¼

Z t

0

KðsÞ
III ðt � nÞ _gðnÞdn: ð75Þ
However, if a traction distribution pf ðxÞ is suddenly applied over the interval x1 < x < x2 on crack faces,

then the transient stress intensity factor of the problem is
KðsÞ;f
III ðtÞ ¼

Z x2

x1

KðsÞ
III ðt; xÞf ðxÞdx: ð76Þ
Although the general results may directly be evaluated by integration from Eqs. (75) and (76), the

superposition method just mentioned can be followed by applying the fundamental solution in Section 3.

For instance, for the case when sudden uniform load syzðx; 0; tÞ ¼ �s0Hð�xÞHðtÞ is applied on the entire

crack surfaces, the dynamic stress intensity factor can be obtained by using the fundamental solution in

Eq. (55). The final result of dynamic stress intensity factor in time domain is
KðsÞ;uniform
III ðtÞ ¼ 2s0

bbgQþð0Þ

ffiffiffiffiffiffiffi
2bt
p

r
: ð77Þ
Because the permeable boundary condition on crack surfaces is assumed in this study, the presence of

electric loading on crack surfaces is not allowable. Equation (77) indicates that dynamic stress intensity
factor is always positive and proportional to

ffiffi
t

p
under uniform shear load. A similar phenomenon can be

observed in Fig. 2 (D0 ¼ 0; t < 2c2a) of Chen and Karihaloo (1999) for the impermeable case.
5. Conclusions

The transient response of a cracked piezoelectric medium subjected to dynamic anti-plane concentrated
loading has been investigated. It is assumed that the crack surfaces are coated with an infinitesimally thin
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conducting electrode that is grounded. A new fundamental solution for piezoelectric materials is derived

and the transient solutions are determined by superposition of the fundamental solution in the Laplace

transform domain. Exact analytical transient solutions for the dynamic stress intensity factor, the dynamic

electric displacement intensity factor, and the dynamic energy release rate are obtained and expressed in
explicit forms. The solution obtained in this paper can be considered to be a Green function for the

associated problem. The solutions to problems of any arbitrary spatially distributed loading, or more

general time dependence, can be obtained by superposition. Furthermore, this method can be extended to

solve more complicatedly piezoelectric problems involving crack propagation or other boundary effects.

The results will be shown in a future paper.
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