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Abstract

In this study, the transient response of a semi-infinite crack subjected to dynamic anti-plane concentrated loading in
a hexagonal piezoelectric medium (6 mm) is investigated. The crack surfaces are assumed to behave as though covered
with a conducting electrode. In order to give an insight into the effect of the electrode boundary condition, a simple half-
plane problem is also discussed in the paper. A new fundamental solution for piezoelectric materials is proposed and the
transient solution for the cracked body is determined by superposition of the fundamental solution in the Laplace
transform domain. The fundamental solution to be used is the problem of applying exponentially distributed traction
on the crack faces in the Laplace transform domain. Exact analytical transient solutions for the dynamic stress intensity
factor, the dynamic electric displacement intensity factor, and the dynamic energy release rate are obtained by using the
Cagniard method of Laplace inversion and are expressed in explicit forms. Finally, numerical results for the transient
solutions are evaluated and discussed in detail.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, due to the intrinsic electro-mechanical coupling behaviors, piezoelectric materials have been
widely used as actuating and sensing devices in smart structures. Because of the brittle properties of most
piezoelectric materials, the failure analysis of piezoelectric structures has attracted more attention from
many researchers. Most of studies, however, are related to static or quasi-static conditions, e.g. Pak (1990),
Sosa (1992), Suo et al. (1992), Park and Sun (1995a,b), Zhang and Tong (1996), Narita and Shindo (1998a),
Qin and Mai (1998), Gao and Fan (1999a,b), Shen et al. (1999), Yang and Kao (1999), Kwon and Lee
(2000), Ru (2000), Gao and Wang (2001), Yang (2001) and Li (2003).
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Because of the mathematical complications, less attention has been paid to the study of dynamic fracture
mechanics of piezoelectric materials. Shindo and Ozawa (1990) first investigated the steady response of a
cracked piezoelectric material subjected to plane harmonic waves. Afterward the dynamic fracture analysis
of piezoelectric materials is developed rapidly. For example, the single crack problem had been investigated
by Chen et al. (1998), Chen (1998), Narita and Shindo (1998b, 1999), Kwon and Lee (2001), Shin et al.
(2001), Meguid and Zhao (2002), and Ueda (2003), while the multiple cracks problem had been studied by
Wang and Meguid (2000), Wang et al. (2000), Meguid and Chen (2001), Wang (2001), Zhao and Meguid
(2002) and Zhou et al. (2003). However, due to the mathematical difficulties, all of the above researchers
obtained their solutions by means of some numerical methods. The exactly analytical solution for cracked
piezoelectric materials is hard to be derived. Li and Mataga (1996a,b) first obtained transient closed-form
solutions for dynamic stress and electric displacement intensities and dynamic energy release rate of a
propagating crack in hexagonal piezoelectric materials. They assumed that the crack surfaces are electrode-
or vacuum-type boundary conditions and the dynamic anti-plane point loading is initially applied at
the stationary crack tip. Hence there is no characteristic length presented in their problems. In this study,
the transient response of a semi-infinite crack subjected to dynamic anti-plane concentrated loading on the
crack faces in a hexagonal piezoelectric medium is investigated. The inherent characteristic length makes
the problem more difficult. A new fundamental solution is derived and the transient solution is determined
by superposition of the fundamental solution in the Laplace transform domain. Similar superposition
techniques had been successfully used to solve many transient problems of purely elastic solids (Ma and
Ing, 1995, 1997a,b; Ing and Ma, 1996, 1997a,b, 1999, 2001, 2003a,b; Ing and Lin, 2002). It demonstrates a
powerful method to deal with cracked problems with characteristic lengths.

The choice of conducting or non-conducting boundary conditions of cracked piezoelectric solids is a
controversial issue. The types of electric boundary conditions along the crack surfaces have received many
discussions in the past researches. How to give suitable consideration to both physical reality and math-
ematical complications is difficult. In this study, the crack surfaces are assumed to be the electrode-type
boundary condition, which shorts out the horizontal component of the electric field at the crack faces but
does not affect the mechanical boundary conditions. The same assumption had been proposed by Bleustein
(1968) and Li and Mataga (1996a). Although this metallic coating condition is chiefly a mathematically
convenient proposition, this boundary condition is also appropriate if the crack surfaces are in a state of
electric contact, or if the crack is filled with conducting gas or liquid (Li and Mataga, 1996a). Under this
assumption, exact analytical transient solutions for the dynamic stress intensity factor, the dynamic electric
displacement intensity factor, and the dynamic energy release rate are obtained in this study. Finally,
numerical calculations have been carried out to show the influence of the pertinent parameters.

2. Transient solutions for a piezoelectric half-plane with electrode boundary

Before we deal with the complicated problem of a cracked piezoelectric medium, a simple half-plane
problem is studied in order to understand the phenomenon of wave propagation under the electrode
boundary condition. If we consider only the out-of-plane displacement and the in-plane electric fields, the
dynamic anti-plane governing equations for a hexagonal piezoelectric material (6 mm) can be described by

cuVw + €15V = piv, (1)

615V2W — 811v2¢ = 0, (2)

where w = w(x, ) is the anti-plane displacement in the z-direction (which is assumed to aligned with the
hexagonal symmetry axis), ¢ = ¢(x,y) is the electric potential, ¢y is the elastic modulus measured in a
constant electric field, ¢; is the dielectric permittivity measured at a constant strain, e;s is the piezoelectric
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constant, and p is the material density. V? = 0*/0x? + 0?/0)” is the in-plane Laplacian and a dot denotes
material time derivative.
The constitutive equations for the piezoelectric material can be expressed as (Chen and Karihaloo, 1999)

T = CaaWy + e1sd, (3)

Dy =eswi —e11¢y, (4)

where 7. and Dy (k = x,y) are the anti-plane shear stress and in-plane electric displacements, respectively.
Introduce a transformation proposed by Bleustein (1968)

615

y=¢-—— (5)
the governing equations expressed in Egs. (1) and (2) can be decoupled as

Viw =L, (6)

C44

Vi =0, (7)

where
2
Caq = C44 + “1s (8)

én
is the piezoelectrically stiffened elastic constant. The constitutive equations can then be rewritten as follows:

Th = CaaWy + e1s g, )

Dk = _Slllp?k- (10)

Consider a piezoelectric half-plane occupying the region of y < 0. The free surface y = 0 is coated with an
infinitesimally thin conducting electrode that is grounded. The piezoelectric half-plane is initially stress-free
and at rest. At time # = 0, an anti-plane dynamic point loading with magnitude p is applied at the origin
(x,y) = (0,0) on the surface. The boundary conditions of the half-plane problem can be described as
follows:

T,W(x707t) :pé(x)H(t), (11>
(b(xao,t) =0, (12)

where () is the Dirac delta function and H() is the Heaviside function.

This transient problem can be solved by using the integral transform method. The one-sided Laplace
transform with respect to time and the two-sided Laplace transform with respect to x are defined by
(Achenbach, 1973)

Pl /fxy, Je o dr, (13)

7 (yys) /fxy, i, (14)

Applying the one-sided Laplace transform over time and the two-sided Laplace transform over x in Egs. (6)
and (7), the general solutions for w* and y* (in the region of y <0) in the double transformed domain are

W (2, y,5) = Ai(s, ), (15)
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W (2, y,5) = Bi(s, 2)esP (16)
where
a(2) = (b = )", (17)
) = (& =22 (18)
and
b= |2 (19)
C44

is the slowness of the bulk shear wave in the piezoelectric material. ¢ — 0 is an auxiliary positive real
perturbation parameter (Li and Mataga, 1996a,b).

From the boundary conditions in Egs. (11) and (12), we can solved the unknown functions 4, and B;.
Then the Cagniard method of Laplace inversion (Cagniard, 1939) is employed, the transient full-field
solutions for shear stresses and electric displacements can be obtained and expressed in time domain as
follows:

1+ +
A 0/

T (%, ,1) _g{lm[m a—t}H(f—br) —kflm[L a@}H(t—er)}y

w(2y) — k2(hy) O
(20)

_p k) O 2 pUs) O
‘L'yz(x,y, l) = ;{Im[a(i?—)——kgﬁ(m §:|H(t - br) - ke Im[m §:|H(t - 8}")}7 (21)

- 811kezp )»;r al;

o) =50 | oy g ) -
_ Snkezp ﬁ(ﬁ) 2 .

e = | o e e} =

where

t .|sin@ ) t .|sin0
21*:——00504—1—' |\/tz—b2r27 Af:——cosé)—i—l!\/tz—szrz,
r r r r

P =x*+)’, 0=cos™! ({)
.
and

PR (24)
¢ Caa811

is the electromechanical coupling coefficient for the electrode boundary condition. It is noted that the
function o — k2f in the denominators of Egs. (20)~(23) corresponds to the Bleustein-Gulyaev piezoelectric
surface wave for the electrode-boundary case (Bleustein, 1968; Li and Mataga, 1996a). This surface wave
propagates at speed ¢, defined by
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N (25)

In addition, the appropriate static solutions can be derived by the limiting case ¢ — oo, and the final
results are

(e y) =200 (26)
T.(x,y) = %fse, (27)
Di(x,y) = "‘(f’_k‘j (8)
D) = enkZplsin 0| (29)

ersmr(l —k2)’

The numerical example to be considered here is a PZT-4 half-plane. Fig. 1 shows the non-dimensional
transient stresses 1./, for different values of 0. It can be seen that the transient response is non-zero for
time ¢ < br (due to the piezoelectric effect) and reveals a square root singularity as the shear wave arrives at
the field point, and then approaches to the corresponding static value rapidly. It is noted that, in the case of

0 = —30°, there is an obvious variation at the instance ¢t = 1.15br that is the arrival time of the Bleustein—
Gulyaev piezoelectric surface wave. In order to observe the characteristic of the surface wave, a field line
0 = —0.1° near the surface is examined and the result is shown in Fig. 2. It is clearly seen that the magnitude

of the transient stress tends towards infinity at the arrival time of the surface wave. Hence, the mode III
problem of a piezoelectric solid exhibits a similar surface wave phenomenon as the in-plane problem of a
purely elastic solid. Fig. 3 shows the non-dimensional electric displacements D, /D;, for different values of 0.

3.0

2.6
k,=0.7026 (PZT-4)
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Fig. 1. Transient stresses t,. of the PZT-4 half-plane for 6 = —30°, —60°, and —90°.
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Fig. 2. Transient stresses t,. of the PZT-4 half-plane for 6 = —0.1°.
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Fig. 3. Transient electric displacements D, of the PZT-4 half-plane for 0 = —30°, —60° and —90°.

It can be viewed that there is no singularity at time ¢ = br and the transient response of the electric dis-
placement D, is always smaller than the corresponding static value.

3. Fundamental solutions for cracked piezoelectric materials

In this section, a fundamental problem is proposed and the associated fundamental solutions will be
used to solve the complicatedly cracked problem with a characteristic length in the next section. Consider
an unbounded hexagonal piezoelectric medium containing a semi-infinite crack that lies on the negative
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x-axis. It is assumed that the crack surfaces are perfectly covered with an infinitesimally thin conducting
electrode that is grounded, such that the electrostatic potential vanishes over the crack surfaces. The
solutions for an anti-plane exponentially distributed traction applied to the crack faces in the Laplace
transform domain will be referred to as the fundamental solutions. Because of the symmetries of the
geometry and boundary conditions, this problem can be viewed as a half-plane problem with material
occupying the region of y > 0, and subjected to the following mixed boundary conditions in the Laplace
transform domain

T.(x,0,5) =™ for —oo<x <0, (30)
$(x,0,5) =0 for —oo <x <0, (31)
w(x,0,s) =0 for 0 < x < o0, (32)

where 7 is a constant.

In order to solve the fundamental problem with the governing equations (6) and (7) and the
mixed-type boundary conditions in Egs. (30)—(32), the integral transform method and the Wiener—Hopf
technique will be implemented in the following derivation. From Egs. (6) and (7), the general solutions
for w* and " (in the upper half-plane y > 0) in the double transformed domain can be obtained as
follows

W (4, y,5) = A(s, 2)e D, (33)
¥ (4,p,s) = B(s, A)e P, (34)
Using the relation in Eq. (5) and substituting into the boundary condition in Eq. (31) will have
B(s,2) = — %A(s, 7). (35)
Application of the multiple Laplace transforms to Egs. (30) and (32) yields
7. (4, 0,s) = ﬁ +7,(4,5) for —oo <x < o0, (36)
w*(4,0,s) =w' (4,s) for —oo <x < o0, (37)

where Re(n) > Re(4). The unknown function 7. is defined to be the shear stress 7,, on the plane y = 0 for
0 < x < oo. Likewise, w_ is defined to be the displacement in the z-direction of the crack face y = 0t for
—o0o < x < 0. Making use of Egs. (33) and (37) will lead to 4 = w*. From Egs. (34), (35) and (9), the
expression for shear stress 7, is obtained and then substituting it into the transformed stress boundary
condition of Eq. (36), we can obtain the following Wiener—Hopf equation:

D(7)w* —M+?, (38)
where
D(2) = —eula(2) — ZB(A). (39)

At this point it is convenient to introduce a new function S(4) by defining

1 a(l) — K2B(L)

"1k \Jbog + in/brg — 1

S(2)
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where by, = 1/cp, is the slowness of the Bleustein-Gulyaev piezoelectric surface wave for electrode
boundary. The function S(4) has the properties that S(1) — 1 as |4| — oo, and S(7) has neither zeros nor
poles in the A-plane by cuts along —by, < A < —¢and ¢ < 4 < 1/by,. From the general product factorization
method, S(1) can be written as the product of two regular functions S, (1) and S_(4), where

b A
5. =[5 0.(2) (41)
and
brg — A
S-() = \[F—0-(4), (42)
in which
b k2z dz
_ - -1 e
0.(4) exp{ [ tan [rx(—z)} s )L} (43)
, 1 k2] dz
Q_(A):exp{;/g tan”! [@}z—i}' (44)
In view of the previous discussion, Eq. (38) may be rewritten as
—em(l — 2 (bbg_;“) (Dt = (b+;”) \/(b+)“)fi ) 4
Wl =) = = 00 = Db+ 90-() 5l + 50, () )

The first term on the right-hand side is regular for Re(4) > —e, except for the pole at A = 5. This pole can,
however, be removed by writing

V/ (b+4) y/ (b+n)
V(b+4) _ i 0.0 ~ 0 N (b+n) (46)
s2(n = 2) (bog + )0+ (%) s*(n—2) s2(n = 2)(bog + )0+ (n)
Eq. (45) can now be rearranged into the desired form
= 1_k2 (bbg_;°) 71—* _ (b+’7)
Wl = e S D 000
V(b+4) (b+1n) V(b+ )T 7)

TR0 Do T DO 01— A)owg + MO (1)  5(bvg + D01 ()

The left-hand side of this equation is regular for Re(1) < 0, while the right-hand side is regular for
Re(A) > —e. Applying the analytic continuation argument, therefore, each side of Eq. (47) represents a
single entire function, say E(4). By Liouville’s theorem, the bounded entire function E(1) is a constant. The
magnitude of the constant can be obtained from order conditions on E£(1) as || — oo, which in turn are
obtained from order conditions on the dependent field variables in the vicinity of x = 0. Furthermore,
7, (x,0,s) is expected to be square root singular near x = 0, i.e. 7. (x,0,5) = O(|x| /%) as x — 07. By using
of the Abelian theorem, E(4) vanishes identically, and then we can solve for w* from the left-hand side of
Eq. (47). Since the amplitude of displacement A4(s, ) = w* in the Laplace transform domain, we find

(b+n)b—4)

A2 = T = R0y + O ()1 — 2)(bog — DO ()

(48)
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Substituting Eq. (48) into Egs. (33)—(35) and making use of Egs. (9) and (10), and then inverting the two-
sided Laplace transform, we can obtain solutions for the fundamental problem in the Laplace transform
domain as follows

1 B )b — e o A
-1 /F ) i, (49)

2mi $(bog + )0 (n) (1 — A)(brog — 4)O-(2)

w(x,y,s) =

_ -1 K2/ (b +n) (b — A)es*Artsix ;
P s) =7 / ers(1— R2)s(bve + 1)0+ (1) (1 — 1) bog — H0_(1)
1 K2/ (b — et
2mi Jr, eis(1 —k2)s(bog + 1) 0+ () (n — ;v)(bbg —2)0-(4)

-1 / VBT )b — A)ae s "
21 Jr, (1= K2)(bog + 1)Q- (0)(n fz)(bbgwgw
s K2\/TB T M (b — AjeHvtis

211 Jr, (1= ) (bog + 1O (0)(n A)(bbg—wQ,(z)

IS (b )b — (e
Be(%8) = /F (1= 12)(bug + 1)0- (1) (1 — ) (bwg — D0 ()
_L mﬁ 7sﬁ(4}+s}oc & (52)

2mi Jr, (1= k) (bog +m)Q+(n)(n i)(bbg—i)Qf(/l)

1 / Sllkg\/ (b + ﬂ)(b — )V)}Le_SﬂM)y_Hh 4
r, eis( ?

2mi 1= &2)(bog +m) Q-+ () (n — 4)(bog — 2)O-(2)
1 311k2\/mﬁ e sP(Ay+six
2ni /r ers(1 = k) (bog +m) Q. () (1 i)(bbg “ho 3 (54)

The corresponding results of the dynamic stress intensity factor and the electric displacement intensity
factor in the Laplace transform domain are

do, (50)

fo(‘x7y7 S) =

ds, (51)

bx(xvyvs) = - (53)

5}’(x7yﬂs) =

— 2(b+

Kiii(s) = lim V2mi,(x,0,5) = - (+ n)g o (55)
and

— . — k2+/2(b +

Kl (s) = lim v2mxD, (x, 0,5) = — i —Slklg)e\/vs ( Igbg +1Z1))Q+(71) 7 (56)
respectively.

4. Transient analysis of a piezoelectric crack subjected to dynamic concentrated loading

Consider a semi-infinite crack located at y = 0,x < 0 in an unbounded hexagonal piezoelectric medium
as shown in Fig. 4. It is assumed that the crack surfaces are completely coated with an infinitesimally thin
perfectly conducting electrode that is grounded, such that the electrostatic potential vanishes over the crack
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Fig. 4. Configuration and coordinate system of a piezoelectric crack subjected to anti-plane shear forces.
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surfaces. At time ¢t =0, a pair of equal and opposite dynamic anti-plane concentrated loadings with
magnitude p are applied at the crack faces with a distance 4 from the crack tip. The time dependence of the
concentrated loading is represented by the Heaviside function H (¢). The boundary condition for the applied
loading can be represented by

T,(x,0,8) = —pd(x + h)H (t). (57)

The incident field generated by the concentrated loading can be expressed in the Laplace transform domain
as follows:

T,.(x,0,5) = ZLm / —pe It d ), (58)

The applied traction on the crack faces as indicated in Eq. (58), has the functional form e**. Since the
solutions of applying traction ™ on crack faces have been solved in the previous section, the diffracted field
generated from the crack tip can be constructed by superimposing the incident wave traction that is equal to
Eq. (58). Since the dynamic stress and electric displacement intensities and the dynamic energy release rate
are the key parameters in characterizing dynamic crack growth, we will focus our attention mainly on the
determination of these quantities. When we combine Egs. (55) and (58), the dynamic stress intensity factor
expressed in the Laplace transform domain can be obtained as follows:

= 1 sih 2(b+4)
K — — —
() =575 / pe { Vil + 0.0 [ 9)
and from Egs. (56) and (58), the dynamic electric displacement intensity factor is
(D) 1 sih eiike/2(b + 2) 2
K =— [ - - dAa. 60
6 =5 [ pe { ens(T— ) /sl + 200, () | (©0)

By using the Cagniard method of Laplace inversion, the relevant dynamic intensity factors in time
domain can be obtained as follows

(‘: T — bh .
K0 = [ [® [f—bbgw(r/h)m]d ) (¢1)

and

(D) 811k2 T—bh
Ky (1) = as(l— 1) \/; / [ o= bbgh)Q(T/h)\/ﬁ]dT H(t). (62)
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It is pointed out that the integrands in the brackets of Eqgs. (61) and (62) are purely imaginary numbers
when ¢ < bh, so the dynamic intensity factors equal zero during this stage. The reason is that for the
particular case of the electrode boundary condition considered here, the electrostatic potential is zero not
only on the crack face but also along the line ahead of the crack. Consequently, there is no effect from
electric field to the dynamic intensity factors before the incident shear wave is diffracted by the crack tip.
Furthermore, both integrands of Eqs. (61) and (62) have a pole singularity at © = byz#, which corresponds
to the instant of arrival of the Bleustein-Gulyaev piezoelectric surface wave traveling along the crack faces
from the load points to the crack tip. The direct calculations cannot be applied to these integrals for
t > byeh. By using contour integration, however, the integrals in Eqs. (61) and (62) for time ¢ > bypgh can be
evaluated and yield

KI(ITI)(t) = KI(ITI)JH(I — bygh), (63)
K\D(1) = K\ H (1 — bugh), (64)
where
) 2
(1) _ s
Ky =p h (65)
and
s enk?p 2
KO = el [ 2 (66)

615(1 —kg) h

The results expressed in Egs. (65) and (66) are the corresponding static solutions of the stress intensity
factor and the electric displacement intensity factor, respectively. It is interesting to note that the magnitude
of both dynamic intensity factors jumps from infinity to the appropriate static value right after the Bleu-
stein—Gulyaev piezoelectric surface wave passes through the crack tip.

The energy release rate is an alternatively important quantity in fracture mechanics. According to the
above mention, there is no contribution from electric field to the dynamic energy release rate because of
the special electrode boundary condition. The energy release rate can be calculated in a way similar to the
purely elastic case. From Freund (1972), the energy release rate can be computed by

G(t) = 2}323 / [r}z(x,o,t)%;/:(x,(), 1) JrDy(x,O,t)%(x,O,l) dx

Ox (67)

. “ Oow
= 2}1138 5 T}z(x,O,t)a(x,O,t) dx.
In order to calculate the dynamic energy release rate, the shear stress 7,. and displacement w along y =0
should be obtained first. Combining Eq. (58) and the fundamental solutions expressed in Egs. (49) and (52),
the anti-plane displacement w and shear stress 7,. represented in the Laplace transform domain can be
derived as follows:

- 1 SH
w(x,y,s) = b / —pe*dn,
ry,

-1 B 15— pJe
-1 dn, b, 68
" {zm ., T 0 5 10201 = e =007 ’“} (©%)
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~ 1 S 1 b+ b — 1n5)o(n, e s n)y+snx
(X, 0, 8) = o /F —petdy, x {_ /F = (b+m) (b —m)aln,) ) dn,
n

27 bog + 11) O+ (1) (1, — 1) (bog — 12) O (1,
1 ./ b+;7 _;7 ﬁy] —sB(2)y-+snpx
- 5 1 2P dn, ;. (69)
2mi Ty, (1- ke)(bbg + 1)@+ (1) (1 = 12) (bog — 1,) Q- (112)
By setting y = 0, inverting the Laplace transform, and then taking the limit x — 0, we can obtain
t _ H _
tim & (,0,0) = — P lim / Re v (=) (70)
x—0 Ox 7[22‘44(1 — kez)\/}_l x—0 0 (T - bbg ) (T/h)\/ t—1T/—X
limz,.(x,0,7) = lim Re © = bhH (x) (71)
liyeetn.0.) = 53 7 | R\ g v
Substituting Egs. (70) and (71) into Eq. (67), and making use of the identity (Freund, 1972)
“ H(x) H(—
im [ AW A g T (72)

a—0 J_, \/; v/ —X _27

the dynamic energy release rate can be obtained as follows:

- p2 ! T—bh . ! o 1 (1) 2
G = whea (1 — k7) { /o Re l (- bbgh)Q(f/h)\/m] d }  2eu(l —K2) Ko (1)) (73)

This expression is the same as the solution in Eq. (156) of Li and Mataga (1996a) (by setting v = 0). As
ke — 0, Eq. (73) reduces to the well-known purely elastic results

G() = 5 KO- (74)
2c44

Next numerical calculations have been carried out to show the influence of the pertinent parameters.
Three piezoelectric materials, PZT-4, BaTiO3;, and PZT-5, are chosen for numerical evaluations. The
material properties of these three piezoelectric media are given in Table 1. Fig. 5 shows the variation of the
dynamic stress intensity factors with the normalized time ¢/bh. Since the electrostatic potential is zero along
the entire line y = 0, the transient solution keeps zero before the shear wave arrives at the crack tip (¢ < bh).
Afterward it decreases violently during the stage bh < t < by,h, and reveals a singularity as the Bleustein—
Gulyaev piezoelectric surface wave arrives at the crack tip (¢t = bygh), and then jumps immediately to the
static value when the surface wave passes through the tip. As indicated in Eq. (65), the static solution is

independent of material properties.
Fig. 6 shows the transient responses of the dynamic electric displacement intensity factors. The transient
behavior is similar to that of the dynamic stress intensity factor. However, the jumped values for static
solutions are not the same for different piezoelectric materials after the surface wave passes the crack tip.

Table 1

Material properties of PZT-4, BaTiOs, and PZT-5 piezoelectric media (Li and Mataga, 1996a)
Compound PZT-4 BaTiO; PZT-5
p (kg/m®) 7500 5700 7750
caq (10" N/m?) 2.56 44 2.11
e (1071° C/Vm) 64.634 98.722 81.103

ers (C/m?) 12.7 11.4 12.3
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Fig. 6. Normalized dynamic electric displacement intensity factors versus normalized time for various piezoelectric materials.

The transient responses of the dynamic energy release rates are plotted in Fig. 7. It can be seen that the
dynamic energy release rate also jumps to a constant value as the surface wave passes the crack tip.
Furthermore, in view of Eq. (73), the value of energy release rate increases with k. while decreases with c44.
However, since k. = +/e}s/(case11), the overall effect is to increase the energy release rate with increasing k.
(or with decreasing cu4) for fixed ejs/¢1. Reexamining Eq. (8), ¢s = cas + (€35/e11), so the elastic modulus
c44 dominates dynamic energy release rate over the ratio of e%s /e11.

So far, the solutions for dynamic intensities and energy release rate of a piezoelectric crack subjected to a
pair of concentrated loadings on crack faces have been derived. It is noted that the solutions for more
general crack face loading can be obtained on the basis of the results shown in Egs. (61), (62) and (73).
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Suppose that the crack faces are loaded by a pair of concentrated dynamic loadings applied at x = —A4 with

time dependent pg(¢) and g(¢) = 0 for ¢ < 0. The dynamic stress intensity factor for this modified problem is
t

Kt = [ Kt - g0 (75)

However, if a traction distribution pf(x) is suddenly applied over the interval x; < x < x, on crack faces,
then the transient stress intensity factor of the problem is

Kit'() = [ Kinsear (76)
X1

Although the general results may directly be evaluated by integration from Egs. (75) and (76), the
superposition method just mentioned can be followed by applying the fundamental solution in Section 3.
For instance, for the case when sudden uniform load 7,.(x,0,¢) = —toH (—x)H (¢) is applied on the entire
crack surfaces, the dynamic stress intensity factor can be obtained by using the fundamental solution in
Eq. (55). The final result of dynamic stress intensity factor in time domain is

- 27 [2bt
(7),uniform o 0 <ob
KIII (t) - bngJr (0) T . (77)

Because the permeable boundary condition on crack surfaces is assumed in this study, the presence of
electric loading on crack surfaces is not allowable. Equation (77) indicates that dynamic stress intensity
factor is always positive and proportional to v/ under uniform shear load. A similar phenomenon can be
observed in Fig. 2 (Dy = 0, < 2¢,a) of Chen and Karihaloo (1999) for the impermeable case.

5. Conclusions

The transient response of a cracked piezoelectric medium subjected to dynamic anti-plane concentrated
loading has been investigated. It is assumed that the crack surfaces are coated with an infinitesimally thin
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conducting electrode that is grounded. A new fundamental solution for piezoelectric materials is derived
and the transient solutions are determined by superposition of the fundamental solution in the Laplace
transform domain. Exact analytical transient solutions for the dynamic stress intensity factor, the dynamic
electric displacement intensity factor, and the dynamic energy release rate are obtained and expressed in
explicit forms. The solution obtained in this paper can be considered to be a Green function for the
associated problem. The solutions to problems of any arbitrary spatially distributed loading, or more
general time dependence, can be obtained by superposition. Furthermore, this method can be extended to
solve more complicatedly piezoelectric problems involving crack propagation or other boundary effects.
The results will be shown in a future paper.
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